

Background

SARS-CoV-2 Nucleocapsid protein (NP) is one of the core components of SARS-CoV-2 virus. It forms a complex with viral genomic RNA in a helical symmetrical structure and plays a key role in the process of virus replication and assembly. Since NP is abundantly expressed during infection, it can be used as an important diagnostic marker for COVID-19 and also can be used as a potential drug target or developing vaccines.

Assay Principle

The SARS-CoV-2 Nucleocapsid protein (NP) Binding kit is a TR-FRET based assay, that is designed to detect binding status of NP to the test antibody. Terbium-labeled rabbit antibody serves as fluorescence donor, that binds to the test rabbit antibody. If a test rabbit antibody binds to NP, fluorescence-labeled anti-Tag1 antibody (fluorescence acceptor) will be brought in close proximity with the fluorescence donor. Excitation of Terbium (340 nm) generates fluorescence resonance energy transfer (FRET) to the fluorescence-labeled acceptor, which consequently fluoresces at 665 nm (figure below). Thus, the test antibody binding to NP can be quantitively measured by calculation of the fluorescent ratio of 665 nm/620 nm.

High throughput screening of antibodies that bind to NP.

Plate Reader

A HTRF® certified microplate reader capable of measuring Time Resolved Fluorescence Resonance Energy Transfer (TR-FRET) is required.

Aurora Biolabs LLC, San Diego, CA 92121, USA; www.aurorabiolabs.com;

SARS-CoV-2 Nucleocapsid Protein Binding Kit

(for rabbit antibody)

Catalog Number: 728273

Components					
Catalog number	ltem	Amount	Storage		
728262	2x Assay Buffer	25 mL	-20°C		
728271	Recombinant SARS-CoV-2 Nucleocapsid protein (full length)	5 µL	-80°C		
727823	Terbium-labeled anti-Rabbit Ab	20 µL	-80°C		
447952	fluorescence-labeled anti-Tag1 antibody	100 µL	-80°C		
	384-well microplate	1	Room temperature		

Materials needed but not supplied

- 1. Microplate reader, HTRF® certified microplate reader
- 2. Customer Test anti-NP-rabbit antibody (to be tested antibody)
- 3. 0.5 M DTT
- 4. Adjustable micro-pipettor
- 5. Sterile Tips

Assay protocol

Prepare 1X assay buffer containing 1 mM DTT (1X DTT-containing assay buffer)
 For example, mix 996 µl distilled water with 1000 µl of 2X assay Buffer (Catalogue number: 728262)
 and 4 µl of 0.5 M DTT. Make only enough 1X DTT-containing assay buffer as needed for the assay.
 Store the remaining 2X assay buffer at -20°C.

2. Prepare SARS-CoV-2 Nucleocapsid protein

Dilute SARS-CoV-2 Nucleocapsid protein (NP) 1,500-fold with 1X DTT-containing assay buffer. For example: 1 μ I of NP + 1,499 μ I of 1X DTT-containing assay buffer. Add 5 μ I of diluted NP protein to each well.

3. Prepare Antibody solution

Prepare mouse antibody with 1X DTT-containing assay buffer to the concentration to be tested. Add 5 μ I of diluted antibody solution to each well except negative control wells.

Aurora Biolabs LLC, San Diego, CA 92121, USA; www.aurorabiolabs.com;

4. Prepare dye solution

Dilute Terbium-labeled anti-Rabbit Ab 1:200 and fluorescence-labeled anti-Tag1 antibody 1:40 in 1X DTT-containing assay buffer. For example: 1 μ l of Terbium-labeled anti-Rabbit Ab + 5 μ l of fluorescence-labeled anti-Tag1 antibody + 194 μ l of 1X DTT-containing assay buffer. Add 10 μ l of this dye mixture to each well.

- 5. Incubate the reaction at room temperature for 1 hour.
- 6. Measure fluorescent intensity

HTRF compatible microplate reader is needed to measure fluorescent intensity of the samples. Fluorescent intensity should be measured twice:

- 1. Excitation wavelength at 340 nm and emission at 620 nm.
- 2. Excitation wavelength at 340 nm and emission at 665 nm.

Protocol Summary

Component	Negative Control	Antibody Test		
1X DTT-containing assay buffer	5 µl	-		
Diluted NP solution	5 µl	5 µl		
Diluted test antibody solution	-	5 µl		
Tb-Anti-Rabbit Ab + Anti-Tag1 Ab	10 µl	10 µl		
Total Volume	20 µl	20 µl		

Incubate at room temperature for 1 hour.

Data Analysis

1. Calculate the ratio of the fluorescent intensity of each well.

$$Ratio1 = \frac{\text{Fluorescent intensity at 620 nm}}{\text{Fluorescent intensity at 340 nm}}$$

2. Calculate the ratio of the fluorescent intensity of each well.

$$Ratio2 = \frac{\text{Fluorescent intensity at 665 nm}}{\text{Fluorescent intensity at 340 nm}}$$

3. Calculate sample signal.

$$Sample \ signal = \frac{Ratio2}{Ratio1}$$

4. Calculate percentage activity

In the absence of the compound (positive control), the sample signal (P) is defined as 100% activity. In the absence of enzyme (negative control), the sample signal (N) is defined as 0% activity. The

Aurora Biolabs LLC, San Diego, CA 92121, USA; www.aurorabiolabs.com;

SARS-CoV-2 Nucleocapsid Protein Binding Kit (for rabbit antibody) Catalog Number: 728273

percent activity in the presence of each compound is calculated according to the following equation: % activity = (S-N)/(P-N) X100, where S= the sample signal in the presence of the compound.

% Activity =
$$\frac{S - N}{P - N} X100$$

Data Presentation

Related products:

Recombinant SARS-CoV-2 Mpro, 3CL protease	728201	50 ug, 500 ug
Recombinant SARS-CoV-2 Papain-like Protease	728251	50 ug, 100 ug
(PLpro, NSP3), CF	120231	
Recombinant SARS-CoV-2 Helicase (NSP13)	728231	10 ug, 50 ug, 100 ug
Recombinant SARS-CoV-2 NSP7	728264	100 ug, 1mg
Recombinant SARS-CoV-2 NSP8	728265	100 ug, 1mg
SARS-CoV-2 Mpro (3CL Protease) Assay Kit	728203	96 reactions
Papain-like (PLpro) Protease Assay Kit	728253	96 reactions
SARS-CoV-2 Nucleocapsid Protein Binding Kit (For mouse antibody)	728263	384 reactions

Products are for research use only and are not intended for human use. We do not sell to patients.

Aurora Biolabs LLC, San Diego, CA 92121, USA; www.aurorabiolabs.com;