


Catalog Number: 72772TAK

#### Background

PARP2 (Poly (ADP-ribose) polymerase 2) is a member of the PARP family and plays a crucial role in DNA repair, particularly in the repair of single-strand breaks (SSBs) in DNA. It binds to DNA at the site of damage, becomes catalytically activated, and uses NAD<sup>+</sup> as a substrate to add poly (ADP-ribose) (PAR) chains to itself and other proteins—a process called PARylation that results in the recruitment of other DNA repair proteins to the damaged site. Because of the high negative charge of PAR polymers, extensive autoPARylation of PARP2 leads to the dissociation of PARP2 from DNA, which is required for DNA repair completion. PARP2 is often overexpressed in various cancers, including breast, ovarian, prostate, lung, and glioblastoma. This overexpression is thought to support tumor cell survival. Some PARP inhibitors not only block the catalytic activity of PARP2 but also trap PARP2 on DNA at sites of damage, preventing its release. This creates a toxic DNA-protein complex that interferes with DNA replication and repair, leading to cell death, particularly in cancer cells deficient in homologous recombination repair (e.g., BRCA1/2-mutant cells).

#### **Assay Principle**

The TR-FRET PARP2 Trapping Assay Kit is designed to detect the poly-ADP-ribosylation activity of PARP2 and the status of PARP2 trapping on DNA. The DNA substrate in the kit is labeled with a fluorophore (acceptor). A Terbium (Tb)-labeled anti-Tag2 antibody that binds to Tag2-Kras serves as the fluorescence donor. Activation of Tb results in fluorescence resonance energy transfer (FRET) if PARP2 binds to the fluorescence-labeled DNA, since the binding brings the fluorescence donor into close proximity with the fluorophore acceptor. Thus, the binding status can be quantitatively measured by calculating the ratio of the emission fluorescence intensities of the acceptor (665 nm) and the donor (620 nm). In the presence of NAD<sup>+</sup>, auto-PARylation of PARP2 leads to its dissociation from DNA, resulting in a decrease in the FRET signal. Inhibition of auto-PARylation activity traps PARP2 on the DNA, and the FRET signal remains high.



Aurora Biolabs, LLC. San Diego, CA, 92121; Tel: 858-215-4510 or 858-453-5700 or 858-374-6010



Catalog Number: 72772TAK

### Application

High throughput screening of compounds that inhibit the auto-PARylation activity of PARP2 for drug discovery.

#### **Plate Reader**

A HTRF® certified microplate reader capable of measuring Time Resolved Fluorescence Resonance Energy Transfer (TR-FRET) is required.

| Components                        |                                         |        |                  |  |
|-----------------------------------|-----------------------------------------|--------|------------------|--|
| Catalog number                    | Item                                    | Amount | Storage          |  |
| 7277-TA-B                         | PARP Assay buffer                       | 25 mL  | -20°C            |  |
| 72772-T2P2                        | Recombinant human Tag2-PARP2            | 5 µL   | -80°C            |  |
| 728429                            | 8 mM NAD⁺                               | 80 µL  | -20°C            |  |
| 4383866                           | 4 μM Fluorescence-labeled DNA substrate | 80 µL  | -80°C            |  |
| 37882                             | Terbium-labeled anti-Tag2 antibody      | 20 µL  | -80°C            |  |
|                                   | 384-well microplate, White              | 1      | Room temperature |  |
| Materials needed but not supplied |                                         |        |                  |  |

- 1. Microplate reader, HTRF® certified microplate reader
- 2. Adjustable micro-pipettor
- 3. Sterile Tips



Catalog Number: 72772TAK

### Assay protocol

#### 1. Prepare the inhibitor compound solution

If the inhibitor compound is dissolved in water, make a solution of the compound 10-fold higher than the final concentration in assay buffer (since you will add 2 µl to the 20 µl reaction). If the inhibitor compound is dissolved in DMSO, make a 100-fold higher concentration of the compound than the highest concentration you want to test in DMSO. Then make a 10-fold dilution in assay buffer (at this step, the compound concentration is 10-fold higher than the final concentration and the DMSO concentration is 10%). To determine an IC50 or to test lower concentrations of the compound, prepare as series of further dilutions in assay buffer containing 10% DMSO (the final concentration of the DMSO will be 1% in all samples).

2. Prepare PARP2 solution

Thaw PARP2 protein on ice. Upon first thaw, briefly spin tube to recover the full contents at the bottom of the tube. Make aliquots of the enzyme for single use. Store remaining undiluted protein at -80°C.

Note: PARP2 protein is sensitive to freeze/thaw cycles. Limit number freeze-thaw cycles for best results. Do not re-use the diluted protein.

Dilute the PARP2 protein 500-fold (1 µL PARP2 + 499 µL assay buffer).

Add 4  $\mu$ I of diluted protein solution to each of positive control wells and inhibitor test wells. Add 4  $\mu$ I of assay buffer to each of negative control wells.

3. Add inhibitor

Add 2 µl of diluted compound solution to each inhibitor test well.

Add 2 µl of inhibitor solvent solution to each of negative and positive control well.

4. Prepare the DNA substrate solution

Dilute the fluorescence-labeled DNA 20-fold (1  $\mu$ L DNA + 19  $\mu$ L assay buffer). Add 4  $\mu$ l of the diluted DNA solution to each well.

5. Prepare NAD<sup>+</sup> solution

Dilute the NAD<sup>+</sup> 25-fold (1  $\mu$ L NAD<sup>+</sup> + 24  $\mu$ L assay buffer).

Add 5  $\mu$ I of diluted NAD<sup>+</sup> solution to each of positive control and compound test wells.

6. Prepare dye solution

Dilute Terbium-labeled anti-Tag2 antibody 1:100. For example: 1 µl of Terbium-labeled anti-Tag2 antibody + 99 µl assay buffer.



Catalog Number: 72772TAK

Add 5  $\mu$ I of this dye mixture to each well.

- 7. Incubate the reaction at room temperature for 30 minutes.
- 8. Measure fluorescent intensity

HTRF compatible microplate reader is needed to measure fluorescent intensity of the samples. Fluorescent intensity should be measured twice:

- 1. Excitation wavelength at 340 nm and emission at 620 nm.
- 2. Excitation wavelength at 340 nm and emission at 665 nm.

#### **Protocol Summary**

| Component                                    | Negative Control | Positive Control | Inhibitor Test |  |  |
|----------------------------------------------|------------------|------------------|----------------|--|--|
| Assay buffer                                 | 4 µl             |                  |                |  |  |
| PARP2 protein                                |                  | 4 µl             | 4 µl           |  |  |
| Inhibitor solvent                            | 2 µl             | 2 µl             |                |  |  |
| Inhibitor solution                           |                  |                  | 2 µl           |  |  |
| DNA substrate                                | 4 µl             | 4 µl             | 4 µl           |  |  |
| NAD⁺ solution                                |                  | 5 µl             | 5 µl           |  |  |
| Assay buffer                                 | 5 µl             |                  |                |  |  |
| Dye solution                                 | 5 µl             | 5 µl             | 5 µl           |  |  |
| Total Volume                                 | 20 µl            | 20 µl            | 20 µl          |  |  |
| Incubate at room temperature for 30 minutes. |                  |                  |                |  |  |

### **Data Analysis**

1. Calculate sample HTRF signal of each well.

$$HTRF = \frac{\text{Fluorescent intensity at 665 nm}}{\text{Fluorescent intensity at 620 nm}} X10,000$$

2. Calculate percentage activity

In the absence of the compound (positive control), the sample signal (P) is defined as 100% activity. In the absence of enzyme (negative control), the sample signal (N) is defined as 0% activity. The percent activity in the presence of each compound is calculated according to the following equation: % activity =  $(S-N)/(P-N) \times 100$ , where S= the sample signal in the presence of the compound.


% activity = 
$$\frac{S - N}{P - N} X100$$

Aurora Biolabs, LLC. San Diego, CA, 92121; Tel: 858-215-4510 or 858-453-5700 or 858-374-6010



Catalog Number: 72772TAK

### Assay result



### **Related products:**

| <u>Product Name</u>           | <u>Catalog #</u> | <u>Size</u>               |
|-------------------------------|------------------|---------------------------|
| Recombinant Human PD-1        | 23731            | 100 µg                    |
| Recombinant Human PD-L1       | 237351           | 100 µg                    |
| Recombinant Human LAG3        | 235243           | 100 µg                    |
| Recombinant Human FGL1        | 233451           | 100 µg                    |
| Recombinant Human CD40        | 232340           | 100 µg                    |
| Recombinant Human CD40L       | 2323405          | 100 µg                    |
| Recombinant Human CD27        | 2323155          | 100 µg                    |
| Recombinant Human CD70        | 232370           | 100 µg                    |
| Recombinant Human OX40        | 236940           | 100 µg                    |
| Recombinant Human OX40L       | 2369405          | 100 µg                    |
| Recombinant Human GITR        | 234487           | 100 µg                    |
| Recombinant Human GITRL       | 2344875          | 100 µg                    |
| Recombinant Human CD40        | 232340           | 100 µg                    |
| Recombinant Human CD40L       | 2323405          | 100 µg                    |
| Recombinant Human CD155       | 2323155          | 100 µg                    |
| Recombinant Human TIGIT       | 2384448          | 100 µg                    |
| TEV Protease                  | 190001           | 1,000 Units, 10,000 Units |
| TEV Protease- His-tag         | 190001-R         | 50 ug, 200 ug, 1 mg       |
| PreScission Protease (HRV 3C) | 190002           | 1,000 units, 10,000 units |
|                               |                  |                           |

Aurora Biolabs, LLC. San Diego, CA, 92121; Tel: 858-215-4510 or 858-453-5700 or 858-374-6010



Catalog Number: 72772TAK

| Recombinant SUMO Protease (Ulp1)                                    | 190003      | 1,000 units, 10,000 units   |
|---------------------------------------------------------------------|-------------|-----------------------------|
| Recombinant YopH                                                    | 200100      | 10 ug, 20 ug, 100 ug, 1 mg  |
| Recombinant Biotin Protein Ligase (BirA)                            | 90101       | 100 ug                      |
| Recombinant SortaseA-5M                                             | 90201       | 50 ug, 200ug                |
| Recombinant Mouse Leukemia Inhibitory Factor                        | 11-0001     | 10 ug, 100 ug               |
| Recombinant Human LIF                                               | 12-0002     | 10 ug, 100 ug, 1 mg         |
| Recombinant Human FGF-basic, Carrier-free                           | 12-0005CFR  | 50 ug, 100 ug, 500 ug, 1 mg |
| Human SOS1, Avi-His tag                                             | 7671HA      | 50 µg, 100 µg               |
| Kras WT Nucleotide Exchange Assay Kit                               | 5727-4121NK | 384 reactions               |
| Kras G12C Nucleotide Exchange Assay Kit                             | 5727-4122NK | 384 reactions               |
| Kras G12D Nucleotide Exchange Assay Kit                             | 5727-4123NK | 384 reactions               |
| Kras G13D Nucleotide Exchange Assay Kit                             | 5727-4133NK | 384 reactions               |
| Kras G12R Nucleotide Exchange Assay Kit                             | 5727-4127NK | 384 reactions               |
| Kras G12V Nucleotide Exchange Assay Kit                             | 5727-4128NK | 384 reactions               |
| Kras WT–cRAF Binding Assay Kit                                      | 5727-4121BK | 384 reactions               |
| Kras G12C–cRAF Binding Assay Kit                                    | 5727-4122BK | 384 reactions               |
| Kras G12D–cRAF Binding Assay Kit                                    | 5727-4123BK | 384 reactions               |
| Kras G12R–cRAF Binding Assay Kit                                    | 5727-4127BK | 384 reactions               |
| Kras G12V–cRAF Binding Assay Kit                                    | 5727-4128BK | 384 reactions               |
| Kras G13D–cRAF Binding Assay Kit                                    | 5727-4133BK | 384 reactions               |
| Kras WT/cRAF/CYPA/Inhibitor Binding Assay Kit                       | 5727-4121CK | 384 reactions               |
| Kras G12C/cRAF/CYPA/Inhibitor Binding Assay Kit                     | 5727-4122CK | 384 reactions               |
| Kras G12D/cRAF/CYPA/Inhibitor Binding Assay Kit                     | 5727-4123CK | 384 reactions               |
| Kras G12V/cRAF/CYPA/Inhibitor Binding Assay Kit                     | 5727-4128CK | 384 reactions               |
| Kras G13D/cRAF/CYPA/Inhibitor Binding Assay Kit                     | 5727-4133CK | 384 reactions               |
| DNA Polymerase Theta Activity Assay Kit                             | 362101      | 96 reactions, 384 reactions |
| OX40/OX40L Inhibitor Binding Assay Kit                              | 2369401     | 384 reactions               |
| PD-1/PD-L -1Inhibitor Binding Assay Kit                             | 237352      | 384 reactions               |
| T7 High Yield RNA Synthesis Kit                                     | K777627     | 25, 50, 100 reactions       |
| PKMYT1 Binding Assay Kit                                            | 756981BK    | 384 reactions               |
| eIF4E/eIF4G Binding Assay Kit                                       | 34343BK     | 384 reactions               |
| Caspase-3 Activity Assay Kit                                        | 810030      | 384 reactions               |
| IDO1 Activity Assay Kit for Inhibitor Screening                     | 910010      | 96 reactions                |
| TEV Protease Activity Assay Kit                                     | 190001AK    | 96 reactions                |
| SARS-CoV-2 Mpro (3CL Protease) Assay Kit                            | 728203      | 96 reactions                |
| SARS-CoV-2 Papain-like Protease Assay Kit                           | 728253      | 96 reactions                |
| SARS-CoV-2 Nucleocapsid Protein Binding Kit (For<br>mouse antibody) | 728263      | 384 reactions               |
| SARS-CoV-2 Nucleocapsid Protein Binding Kit (For                    | 728273      | 384 reactions               |
| rabbit antibody)                                                    | /           |                             |

Products are for research use only and are not intended for human use. We do not sell to patients.

Aurora Biolabs, LLC. San Diego, CA, 92121; Tel: 858-215-4510 or 858-453-5700 or 858-374-6010